2.6.3 Теорема

Если выполнено соотношение: , то выполнено и соотношение , т.е. .

Доказательство. Если , то совокупности исходных признаков  и , выполненных для  и , совпадают. Из теоремы 2.6.1 вытекает, что для каждого класса толерантности  и  одновременно содержатся или не содержатся в нем. Таким образом,  и  имеют одинаковые наборы канонических признаков, т.е. . Теорема доказана.

Следующая теорема, принадлежащая С.М. Якубович, дает условия того, что некоторое множество является классом толерантности, т.е. того, что некоторый признак является каноническим.

 

2.6.4 Теорема

Пусть имеется карта . Для, того чтобы элемент покрытия  являлся классом порожденной толерантности , необходимо и достаточно, чтобы для любого подмножества , из  следоаало бы .

Доказательство. Сначала предположим, что множество  не является классом толерантности. Так как  является предклассом, то единственная причина, по которой  может не быть классом, состоит в том, что существует , не входящий в  и толерантный ко всем элементам . Значит, для всякого  существует множество , содержащее  и . Таким образом, множества  образуют покрытие множества . Но все  содержат элемент , не входящий в . Следовательно, пересечение  не содержится в . Итак, мы доказали достаточность условия, указанною в теореме 2.6.4. Докажем теперь необходимость. Пусть существует такое подмножество , что , но . Значит, существует элемент , не входящий в , но входящий во все . Этот элемент толерантен ко всем . Значит,  не является максимальным предклассом, т.е. не является классом толерантности. Теорема доказана.

Рассмотрим еще так называемые сопряженные и производные пространства толерантности.

Пусть  – произвольное пространство толерантности, и пусть  – некоторая совокупность классов толерантности. Множество  естественным образом превращается в пространство толерантности  при помощи следующего определения: , если .

Определение. Если  совпадает с множеством  всех классов, то пространство  называется сопряженным к  и обозначается  (таким образом, ).

Рассмотрим несколько примеров.

В пространстве  элемент , содержащий все числа, толерантен ко всем элементам и, стало быть, входит во все классы толерантности. Значит, в пространствe   – полное отношение.

На рис. 4 изображен циклический граф из 7 вершин. Классами толерантности являются "ребра", а толерантны классы, соответствующие смежным ребрам. Ясно, что для линейного графа из  вершин сопряженным является линейный граф из  вершин.

На рис. 5 изображен циклический граф. Сопряженным к нему будет циклический граф из того же числа верин (если количество вершин исходного графа было больше трех).

На рис. 6 изображено пространство толерантности , состоящее из двух циклов, зацепленных в одной точке. Сопряженное пространство  состоит из таких же циклов с более сложным зацеплением. Но сопряженное к последнему пространство  по существу совпадает с исходным пространством .

Определение. Пусть  – базис. Тогда пространство  называется сопряженным к , относительно данного базиса .

Определение. Второе сопряженное пространство относительно некоторого базиса  в  и базиса  в  называется производным от исходного пространства толерантности .

Итак, производное пространство толерантности определяется не однозначно, а с точностью до выбора базисов. Этот произвол исключается, когда  и  имеют по единственному базису.

Рассмотрим несколько примеров.

1. Для линейного графа с  вершинами  производное пространство также есть линейный граф, но с  вершинами (см. рис. 4)

2. Для циклического графа с  вершинами  производное пространство "совпадает" с исходным пространством (см. рис. 5).


Информация о работе «Отношения эквивалентности и толерантности и их свойства»
Раздел: Математика
Количество знаков с пробелами: 66989
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
102605
4
0

... чем «я», делает мировосприятие более многомерным, целостным, а значит более адекватным реальности [10, c.23-27]. Глава 2. Государственно-правовое регулирование проблем толерантности в современном обществе   2.1 Анализ правовых актов по проблемам толерантности В Декларации о ликвидации всех форм дискриминации на основе религии или убеждений, которая была принята Генеральной Ассамблеей ООН 25 ...

Скачать
107976
3
5

... сигналов, передающихся от одного живого организма другому (от родителей - потомкам) или от одних клеток, тканей, органов другим в процессе развития особи; 6.   в математике, кибернетике – количественная мера устранения энтропии (неопределенности), мера организации системы; 7.         в философии – свойство материальных объектов и процессов сохранять и порождать определенное состояние, которое в ...

Скачать
611708
8
6

... в отечественной теории и практике психологических измерений. Хотя концепт осмысленности измерения развивается с трансформацией идей Стивенса и разработкой проблем статистики и логики, его положения относительно шкалирования, по проблемам измерений в психологии и связанной с ними осмысленностью измерений требуют, на наш взгляд, критического анализа привычной практики использования психологического ...

Скачать
33860
0
1

... N(X)N, состоящее из тех и только из тех i, для которых = 1. Это объясняет, почему изложение вероятностных и статистических результатов, относящихся к анализу данных, являющихся объектами нечисловой природы перечисленных выше видов, велось [37, гл.4] на языке конечных случайных множеств. Множества как исходные данные появляются и в иных постановках. Из геологических реалий исходил Ж.Матерон ...

0 комментариев


Наверх