1.3.5 Лемма
Для любых отношений ,
(8)
(9)
(8) вытекает из . (9) доказывается аналогично.
1.3.5 Лемма
Для любых транзитивных отношений , , из и вытекает .
Доказательство теоремы 1.3.4. Из леммы 1.3.5
(10)
(11)
Из (10) и (11)
(12)
Из леммы 1.3.5
(13)
Из (12), (13), леммы 1.3.5 и того, что любое отношение вида транзитивно,
(14)
Подобно тому как доказывается (12), доказывается
(15)
Подобно тому как мы из (13) и (13) вывели (14), из (14) и (15) выводится
(16)
Из (16) и аналогично доказываемого "обратного" включения вытекает (7). Теорема доказана.
Нетрудно убедиться, что для любой эквивалентности
(17)
где – диагональное отношение.
Покажем теперь, что операция не дает ничего нового:
Если и – эквивалентности, то
(18)
Доказательство. Заметим сначала, что, учитывая лемму 1.3.4, Применяя транзитивное замыкание к обеим частям, ввиду свойства монотонности транзитивного замыкания имеем
(19)
Далее, применяя распределительный закон получим
(20)
Мы использовали здесь тот факт, что для рефлексивного выполнено включение , а следовательно, . Запишем теперь выражение для транзитивного замыкания, используя (20):
Отсюда ясно, что , т.е.
(21)
Сравнивая включения (19) и (21) получим искомое соотношение (18).
Отсюда вытекает следующий результат, также принадлежащий Шику:
1.3.6 Теорема
Если и – эквивалентности и , то
(22)
В самом деле, по теореме 1.3.3 произведение является эквивалентностью, а стало быть отношение совпадает со своим транзитивным замыканием . Но тогда из теоремы 1.3.5 следует (22).
... чем «я», делает мировосприятие более многомерным, целостным, а значит более адекватным реальности [10, c.23-27]. Глава 2. Государственно-правовое регулирование проблем толерантности в современном обществе 2.1 Анализ правовых актов по проблемам толерантности В Декларации о ликвидации всех форм дискриминации на основе религии или убеждений, которая была принята Генеральной Ассамблеей ООН 25 ...
... сигналов, передающихся от одного живого организма другому (от родителей - потомкам) или от одних клеток, тканей, органов другим в процессе развития особи; 6. в математике, кибернетике – количественная мера устранения энтропии (неопределенности), мера организации системы; 7. в философии – свойство материальных объектов и процессов сохранять и порождать определенное состояние, которое в ...
... в отечественной теории и практике психологических измерений. Хотя концепт осмысленности измерения развивается с трансформацией идей Стивенса и разработкой проблем статистики и логики, его положения относительно шкалирования, по проблемам измерений в психологии и связанной с ними осмысленностью измерений требуют, на наш взгляд, критического анализа привычной практики использования психологического ...
... N(X)N, состоящее из тех и только из тех i, для которых = 1. Это объясняет, почему изложение вероятностных и статистических результатов, относящихся к анализу данных, являющихся объектами нечисловой природы перечисленных выше видов, велось [37, гл.4] на языке конечных случайных множеств. Множества как исходные данные появляются и в иных постановках. Из геологических реалий исходил Ж.Матерон ...
0 комментариев