2.6 Дальнейшее исследование структуры толерантностей
Рассмотрим множество и его покрытие . Пару мы будем далее называть картой.
Произвольная карта позволяет ввести на множестве отношение толерантности , определенное условием: , если существует такое , что одновременно и . Так определенную толерантность мы назовем толерантностью, порожденную картон . Очевидно, каждое является предклассом порожденной толерантности .
Если – пространство толерантности и – множество всех классов толерантности в этом пространстве, то, в силу леммы 2.3.3 толерантность, порожденная картой , совпадает с исходной толерантностью . Аналогичное утверждение справедливо и для произвольного базиса в пространстве .
Карта называется канонической, если каждый элемент покрытия оказывается классом толерантности, порожденной исходной картон . Легко видеть, что если карта является канонической, то содержит некоторый базис , порожденный толерантности: .
На рис. 1 изображена некоторая карта , а справа система классов порожденной толерантности (впрочем, в данном случае эта система состоит из одного класса). Этот пример показывает, в частности, существование неканонических карт.
Каждая карта естественным образом приводит к всюду определенному соответствию
(25)
которое каждому элементу сопоставляет все те , для которых . Наоборот, если дано некоторое всюду определенное соответствие , то оно порождает покрытие множества , состоящее из прообразов элементов из при соответствии . Таким образом, тогда и только тогда, когда существует такое , что есть множество элементов из , которым соответствие сопоставляет . Обозначим для дальнейшего прообраз элемента при соответствии через .
По соответствию (25) можно построить отображение,
(26)
которое каждому элементу сопоставляет непустое множество элементов , для которых . С помощью отображении (26) толерантность , порожденная исходной картой , выражается условием , если . Можно ввести еще и отношение , определяемое условием: , если . , очевидно, является эквивалентностью.
Посмотрим на примерах, как канонические признаки выражаются через исходные признаки карты. В примере на рис. 1 Имеем .
В примере на рис. 2а, изображено соответствие: , где , . Нa рис. 2б изображены классы порожденной толерантности. Легко проверить, что , .
На рис 3 исходная карта уже является канонической. Но если взять каноническую карту с полным набором классов толерантности, то получим, что . Посмотрим далее, каким образом и всегда ли канонические признаки могут быть выражены через исходные.
... чем «я», делает мировосприятие более многомерным, целостным, а значит более адекватным реальности [10, c.23-27]. Глава 2. Государственно-правовое регулирование проблем толерантности в современном обществе 2.1 Анализ правовых актов по проблемам толерантности В Декларации о ликвидации всех форм дискриминации на основе религии или убеждений, которая была принята Генеральной Ассамблеей ООН 25 ...
... сигналов, передающихся от одного живого организма другому (от родителей - потомкам) или от одних клеток, тканей, органов другим в процессе развития особи; 6. в математике, кибернетике – количественная мера устранения энтропии (неопределенности), мера организации системы; 7. в философии – свойство материальных объектов и процессов сохранять и порождать определенное состояние, которое в ...
... в отечественной теории и практике психологических измерений. Хотя концепт осмысленности измерения развивается с трансформацией идей Стивенса и разработкой проблем статистики и логики, его положения относительно шкалирования, по проблемам измерений в психологии и связанной с ними осмысленностью измерений требуют, на наш взгляд, критического анализа привычной практики использования психологического ...
... N(X)N, состоящее из тех и только из тех i, для которых = 1. Это объясняет, почему изложение вероятностных и статистических результатов, относящихся к анализу данных, являющихся объектами нечисловой природы перечисленных выше видов, велось [37, гл.4] на языке конечных случайных множеств. Множества как исходные данные появляются и в иных постановках. Из геологических реалий исходил Ж.Матерон ...
0 комментариев