2.4.2 Лемма

Если  – класс толерантности в , содержащий элемент , то .

Доказательство. Действительно, все элементы, толерантные к , обязаны содержать номер  в своем наборе. Значит, . Но  есть класс, т.е. по определению не может целиком содержаться в другом классе. Значит, .

2.4.3 Лемма

В пространстве  существует единственный базис: .

Доказательство. Пусть  – базис в . Тогда в нем должен существовать класс, содержащий элемент . По предыдущей лемме таким классом может быть только . Значит, базис  должен содержать все классы . Но они уже сами образуют базис, т.е. .

В силу определения базиса толерантность в  можно задать только  признаками, соответствующими  базисным классам .

Итак, в пространстве  остальные классы играют чисто паразитическую роль, не участвуя ни в одном базисе. Вообще говоря, существуют пространства толерантности с неединственным базисом.

Рассмотрим пространство . Оно состоит из целочисленных кортежей  длины , где . Обозначим через  множество, состоящее из всех элементов, для которых . Легко проверить, что эти множества образуют классы толерантности. Итак, класс  – это совокупность кортежей, у которых фиксированная координата принимает фиксированное значение. Из определения толерантности в  сразу следует, что классы  образуют базис. Общее количество этих классов равно , а каждый класс содержит  элементов.

2.5 Связь отношений эквивалентности и толерантности

Когда отношение толерантности оказывается транзитивным, т.е. превращается в свой частный случай – в отношение эквивалентности, то классы толерантности превращакугся в классы эквивалентности. Так как классы эквивалентности не пересекаются, справедлива

Лемма. Отношение толерантности  янлнигся отношением эквивалентности тогда и только тогда, когда классы толерантности не пересекаются друг с другом.

Вернемся теперь к изучению отображения , построенного в процессе доказательства теоремы 2.3.1 и выясним, какие элементы из  имеют одинаковый образ при отображении , т.е. отчего  бывает не инъективным.

 


Информация о работе «Отношения эквивалентности и толерантности и их свойства»
Раздел: Математика
Количество знаков с пробелами: 66989
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
102605
4
0

... чем «я», делает мировосприятие более многомерным, целостным, а значит более адекватным реальности [10, c.23-27]. Глава 2. Государственно-правовое регулирование проблем толерантности в современном обществе   2.1 Анализ правовых актов по проблемам толерантности В Декларации о ликвидации всех форм дискриминации на основе религии или убеждений, которая была принята Генеральной Ассамблеей ООН 25 ...

Скачать
107976
3
5

... сигналов, передающихся от одного живого организма другому (от родителей - потомкам) или от одних клеток, тканей, органов другим в процессе развития особи; 6.   в математике, кибернетике – количественная мера устранения энтропии (неопределенности), мера организации системы; 7.         в философии – свойство материальных объектов и процессов сохранять и порождать определенное состояние, которое в ...

Скачать
611708
8
6

... в отечественной теории и практике психологических измерений. Хотя концепт осмысленности измерения развивается с трансформацией идей Стивенса и разработкой проблем статистики и логики, его положения относительно шкалирования, по проблемам измерений в психологии и связанной с ними осмысленностью измерений требуют, на наш взгляд, критического анализа привычной практики использования психологического ...

Скачать
33860
0
1

... N(X)N, состоящее из тех и только из тех i, для которых = 1. Это объясняет, почему изложение вероятностных и статистических результатов, относящихся к анализу данных, являющихся объектами нечисловой природы перечисленных выше видов, велось [37, гл.4] на языке конечных случайных множеств. Множества как исходные данные появляются и в иных постановках. Из геологических реалий исходил Ж.Матерон ...

0 комментариев


Наверх