Алгоритмы управления роботами

Технология и автоматизация производства РЭА
ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС ПРОИЗВОДСТВА РЭА И ЗАДАЧИ Структура производства РЭА, особенности Система стандартизации Если предприятие существует сравнительно давно, входит или Задачи службы стандартизации на предприятии Контроль хода технологического процесса и качества Системы обеспечения качества продукции Сертификация продукции с сертификацией системы качества на Структура и характеристики технологических систем Стадии и этапы разработки РЭА Исходные данные для разработки технологии Основные принципы автоматизации производства ЭВМ в режиме советчика. В таких системах кроме сбора и обра- Понятие автоматизированного технологического Иерархическая структура автоматизированной Многоцелевое технологическое оборудование с микропроцессорным Применение роботов на вспомогательных и транспортных Алгоритмы управления роботами Классификация систем управления Трудно или даже невозможно дать строгое формальное описание Технико-экономическая эффективность как целевая Системы оптимизации параметров технологических процессов. В Ние системы Устойчивость линейных САР. Если какое-либо решение линейного Понятие и типы моделей сложных систем Идентификация технологических процессов Надежность технологических систем. Надежность Вычисление условных характеристик потока отказов; Иногда трудно осуществлять наблюдение за работой некоторых Связь показателей надежности и качества Методы оценки надежности технологических систем На высшем уровне решаются задачи координации взаимодействия ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ПРОИЗВОДСТВЕНЫХ При однобайтовой адресации и 961 при двухбайтовой Основные понятия теории вероятности Если нет возможности произвести замену оборудования, а сущест-
369637
знаков
0
таблиц
0
изображений

1.13. Алгоритмы управления роботами

Алгоритмы и методы обучения роботов подразделяются на:

- прямое обучение;

- роботоориентированное программирование;

- метод задачно-ориентированного программирования.

При прямом обучении предполагается ручное перемещение робота во

все требуемые положения и запись соответствующих им обобщенных коорди-

нат сочленений. Выполнение программы заключается в перемещении сочле-

нения робота в соответствии с заданной последовательностью положений и

не требует универсальной вычислительной машины. Ограничением является

то, что невозможно использовать датчики. Этот метод программирования

эффективен для точечной сварки, окраски и простых погрузочно-разгру-

зочных работ с фиксированными положениями рабочего органа и обрабаты-

ваемой детали в защищенной от попадания посторонних предметов и людей

зоне.

При роботоориентированном программировании используются датчики и

суть программирования заключается в том, что происходит опрос датчиков

и определяется движение робота в зависимости от обработки сенсорной

информации. Преимуществом этого метода является то, что при использо-

вании сенсорной информации робот может функционировать в условиях не-

которой неопределенности. Этот метод используется для сборки или конт-

роля качества сборки. Упростить процедуру программирования можно путем

использования в роботоориентированных языках метода машинной графики,

который связан с заменой метода прямого обучения моделированием рабо-

чего пространства роботов. Этот метод в значительной степени воспроиз-

водит процесс прямого обучения роботов с такими его достоинствами, как

возможности свободной смены точки зрения, визуального контроля взаим-

ного положения всех элементов рабочего пространства, интерактивной от-

ладкой. Подключение САПР к процессу программирования роботов позволяет

резко повысить степень интеграции робота с производственной системой,

т.е. одна и та же БД может быть использована для всей производственной

системы.

При методе задачно-ориентированного программирования определяется


- 44 -

не движение роботов, а желаемое расположение объектов. Исходной инфор-

мацией для этого метода программирования является геометрическая мо-

дель рабочего пространства и робота. Такие системы называются система-

ми моделирования рабочей обстановки. Характерной особенностью таких

систем является отказ от детального программирования конкретных дейс-

твий робота и программирование задачи в терминах взаимного положения

объектов в рабочем пространстве и его изменений. Фактически действия

робота строятся с помощью методов искусственного интеллекта на основе

модели робота и окружающих его объектов. Здесь также большое значение

имеет геометрическая модель.

Программирование роботов с использованием модельных представлений

включает 3 основных этапа:

1. формирование необходимых информационных моделей;

2. построение программных перемещений деталей с контролем взаим-

ного положения, выполнения технологических операций, в т.ч. смены зах-

ватного устройства и инструмента, проверок условий и организации логи-

ческих переходов, синхронизации с другими устройствами;

3. получение исполнительной программы управления роботом на языке

низкого уровня.

Построение геометрической модели рабочего пространства может быть

осуществлено одним из трех способов:

1. с помощью манипулятора;

2. средствами машинной графики;

3. с помощью системы технического зрения.

Первые два были рассмотрены выше (прямое обучение и роботоориен-

тированное и задачно-ориентированное программирование), а третий спо-

соб - это по-существу модификация первого - интерактивное зрение, в

котором оператор, пользуясь лазером как указкой, указывает световым

пятном характерные точки объектов рабочего пространства, а координаты

измеряются системой технического зрения.


- 45 -

2. ТЕХНОЛОГИЯ РЭА КАК СЛОЖНАЯ СИСТЕМА.

2.1. Общие принципы управления сложными системами.

При определении некоторого объекта как системы предполагается на-

личие следующих признаков:

1. объекта (системы), состоящего из множества элементов и их

свойств, которые могут рассматриваться как единое целое благодаря свя-

зям между ними и их свойствами;

2. исследователя, выполняющего любую целенаправленную деятель-

ность (исследовательскую, проектную, организационную и др.);

3. задачи, с точки зрения решения которой исследователь определя-

ет некоторый объект как систему;

4. языка, на котором исследователь может описать объект, свойства

его элементов и связи.

Любой целенаправленный процесс, происходящий в любой сложной сис-

теме, представляет собой организованную совокупность операций, которые

условно можно разбить на две группы: рабочие операции и операции уп-

равления.

Рабочие операции - это действия, необходимые непосредственно для

выполнения процесса в соответствии с природой и законами, определяющи-

ми ход процесса. Например, процесс обработки детали на токарном станке

состоит из таких рабочих операций, как закрепление детали, подача рез-

ца, снятие стружки и др.

Для достижения цели процесса рабочие операции должны направляться

и организовываться операциями управления. Совокупность операций управ-

ления образует процесс управления.

Система, в которой осуществляется процесс управления, называется

системой управления. В структурном аспекте любую систему управления

можно представить взаимосвязанной совокупностью объекта управления

(управляемой подсистемы) и управляющего органа (управляющей подсисте-

мы). Обобщенная структура системы управления приведена на рисунке 7.

──────────────────────────────────────────────────────────────────────

цель управления

┌──────────────

┌─────────────┼───────────────────┐

│ \│/ │

│ ┌───┴─────────┐ │

│ X(t) │ управляющий │<────────┼──────┐

│ ┌─────>│ орган ├────────┐│ │

│ │ └─────────────┘ ││ │

│ │ U(t) ││ │

│ │ ┌─────────────┐ ││ │

│ │ │объект управ-│<───────┘│ └─────

│ └──────┤ления │<────────┼─────────────

│ └─────────────┘ │возмущающие

└─────────────────────────────────┘воздействия

Рис. 7. Обобщенная структура системы управления, где: X(t) - ин-

формация о состоянии системы; U(t) - управляющее воздействие.

──────────────────────────────────────────────────────────────────────

Т.к. любой процесс управления является целенаправленным процессом,

должна быть известна цель управления. Это значит, что управляющему ор-

гану должна быть известна цель управления, т.е. информация, используя

которую можно определить желаемое состояние объекта управления. Управ-

ляющий орган воздействует на объект управления так, чтобы его состоя-

ние соответствовало желаемому.

Объект управления представляет собой открытую систему, т.е. нахо-


- 46 -

дится в динамическом взаимодействии с окружающей средой. Влияние внеш-

ней среды носит неконтролируемый характер и выражается в случайном из-

менении его состояния. Воздействие окружающей среды на объект управле-

ния называется возмущающим воздействием.

Для формального описания задачи управления введем некоторые опре-

деления. Предположим, что доступная информация об объекте управления

содержится в n функциях от времени X 4i 0(t), i=1,2...n. Будем рассматри-

вать переменные X 4i 0 как компоненты многомерной векторной функции X(t),

называемой вектором состояния объекта управления. В системе управления

эти переменные являются контролируемыми выходными переменными объекта

управления и одновременно входными переменными управляющего органа

(см. рис. 7).

Состояние объекта управления изменяется под воздействием возмуща-

ющих факторов F(t)={f 41 0(t),f 42 0(t),....,f 4k 0(t)}, называемых вектором воз-

мущения, и целенаправленного влияния управляющего органа, называемого

вектором управления U(t)={u 41 0(t),u 42 0(t),...,u 4m 0(t)}. В системе управления

переменные u 4j 0(t) являются входными переменными объекта управления и

одновременно выходными управляющего органа.

В любой момент времени t состояние объекта управления X(t) явля-

ется функцией векторов U(t), F(t), а также начального состояния X 4o 0(t),

т.е. X(t)=X{U(t),F(t),X 4o 0(t)} (7).

Уравнение (7) есть математическая модель объекта управления, опи-

сывающая закон его функционирования, в котором единственным изменяемым

целенаправленно фактором является вектор управления U(t). Задача уп-

равления формулируется следующим образом: найти такие вектор управле-

ния и вектор состояния, которые обеспечивают достижение цели управле-

ния. Цель управления может иметь различную формулировку, однако в

большинстве случаев ее можно формально определить значением J 5* 0 некото-

рого функционала J, который называют критерием управления или целевой

функцией: J= J{ X(t),F(t),U(t)} (8).

В реальных объектах управления вектор состояния и вектор управле-

ния могут находиться в определенной конечной области значений:

U(t)сA(t), X(t)сB(t) (9). Здесь А и В - замкнутые области соответс-

твенно векторного пространства управлений и состояний.

 Решение задачи заключается в том, чтобы найти такие значения век-

торов состояния X 5* 0(t) и управления U 5* 0(t), при которых выполняется ус-

ловие J{X 5* 0(t),F(t),U 5* 0(t),X 4o 0(t)}=J 5* 0 (10) и одновременно удовлетворяются

ограничения (9).

Если задачу управления поставить несколько по-другому, тогда она

примет следующий вид: найти и реализовать функциональную зависимость

U 5* 0(t)=U{X(t),F(t)} (11), обеспечивающую наилучшее приближение к задан-

ному значению критерия управления. Выражение (11) называется алгорит-

мом управления. Определение программы управления заключается в выра-

ботке траектории движения системы X 5* 0(t) в пространстве параметров ее

состояния.

Контроль состоит в измерении значений компонентов вектора состоя-

ния X(t) по вектору наблюдения Z(t) и определении вектора ошибки e(t)

при наличии возмущающих воздействий F(t).

Формирование управляющего воздействии (принятие решений) заключа-

ется в определении значений управляемых переменных, приводящих объект

управления в желаемое состояние.

Функциональная схема системы управления приведена на рис. 8.

Функциональная схема системы регулирования отличается от приведенной

выше тем, что отсутствует программатор. Желаемое состояние объекта за-

дается извне и то, чем оно задается, называется обычно задающим воз-

действием.


Информация о работе «Технология и автоматизация производства РЭА»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 369637
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
55995
8
0

... гарантійного ремонту). В конструкції кришки для цього передбачено пломбувальний "стакан", що під час складання виробу на виробництві заповнюється пломбувальною пастою перед загвинчуванням гвинта. 2.2 Технологічний аналіз елементної бази В своєму складі блок живлення БП-9/4 має таку елементну базу: мікросхема, транзистор, діоди, конденсатори, резистори постійні та змінні. Усі перелічені ЕРЕ ...

Скачать
10356
2
1

... выполнения норм времени, принимаем равным 1. Результаты расчета показателей поточной линии сборки приведены в таблице 1.2. Маршрутное описание технологического процесса производства модуля сопряжения цифрового мультиметра с компьютером представлено в приложении в виде маршрутных карт. Таблица 1.2 – Результаты расчета показателей поточной линии сборки Операция Оборудование Производит

Скачать
36129
1
4

... 0mil 0.0deg (0.0mil,0.0mil) Flash"* Выполнив сверление отверстий в ПП, робот выполняет установку ЭРЭ. После установки ЭРЭ, плату отправляют на пайку волной припоя. 2 МОДЕЛИРОВАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА   Моделирование – это метод исследования сложных систем, основанный на том, что рассматриваемая система заменяется на модель и проводится исследование модели с целью получения информации об ...

Скачать
128462
1
16

... приведен полный перечень и расчетные формулы используемых для оценки ТК РЭА количественных показателей. 3.2 Разработка информационного обеспечения системы показателей эффективной организации управленческого труда в организации и технологичности конструкции изделий и их составных частей Стандартами ЕСТПП введена система количественных оценок технологичности конструкций, охватывающая всю ...

0 комментариев


Наверх